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Inverse scattering for the plasma wave equation starting with 
large-t data 
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35294, USA 
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Abstract. The inverse scattering problem for the plasma wave equation is approached from 
the viewpoint of scattering theory for the reduced wave equation. It is shown that the 
scattered wave for the plasma wave equation has the large-[ asymptotics which are expressed 
by the scattering amplitude for the Schrodinger operator associated with the plasma wave 
equation. 

1. Introduction 

The inverse scattering problem for low-density plasmas such as the electron density 
in Earth's atmosphere has been studied by many authors including Jordan and Ahn 
(1979), Morawetz (1981), Morawetz and Kriegsmann (1983), DeFacio and Rose (1983,  
Rose et a1 (1985). All of these works have used either the time-domain or the L2-kernel 
properties to establish the results. The role played by spectral theory is vanishingly 
small in the above works. Lax and Phillips (1967) and Wilcox (1975) have developed 
the spectral theory of wave equations. Wilcox's approach will be shown to give a clear 
and simple treatment of the inverse scattering problem of the three-dimensional plasma 
equation 

(1.1) 
where t E R, x E R3, A is the Laplacian and 8: = d2/8t2 .  The relation of the reduced or 
Helmholtz equation to time-domain approach will also be clarified. One of the 
consequences of the main theorem (theorem 2.2)  is that the large-t asymptotics U :  

are the same as the large-x asymptotics in the sense that U :  is expressed by the 
scattering amplitude F (  k, w, U ' )  for the Schrodinger operator Fssociated with the 
plasma wave equation. It is hoped that these methods may persuade some applied 
mathematicians and theoretical physisists to adopt them in formulating their work. It 
is clear that the spectral approach probably will not solve their calculation problems. 

In § 2 we shall present the asymptotic formula for the scattering wavefunction 
us'( t,  x )  which is defined by 

( A  - 8: - V( x ) )  U ( t, X )  = 0 

u " ( t , x ) =  u ( t , x ) - u 0 ( t , x )  (1.2) 
where U (  t ,  x )  is the solution of the equation (1.1) with the initial condition and U,,( t ,  x )  
is the solution of the wave equation 

[ A - 8 : ] ~ o ( t ,  x ) = O  (1.3) 

t Partly supported by NSF EPSCoR grant no RII-8610669. 
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with the same initial condition. A proof of the asymptotic formula will be given in 
0 3 where we shall essentially follow the arguments of Wilcox (1975, 1983). In 0 4 the 
inverse scattering problem for the plasma wave equation will be discussed. From the 
asymptotic formula we recover the scattering amplitude associated with the Schrodinger 
operator 

H = - A +  V ( X )  (1.4) 

so that we can reduce the inverse scattering problem for the plasma wave equation to 
the inverse scattering problem for the Schrodinger operators. 

2. Asymptotic formula for the plasma wave equation 

Let us consider the plasma wave equation ( l . l ) ,  where V ( x )  satisfies the following 
assumption. 

Assumption 2.1. V ( x ) ,  x E R3, is a non-negative, bounded function with compact 
support, i.e. V ( x )  is a measurable function defined on R3 satisfying 

and 

with positive CO and Ro. 

Let H be the self-adjoint realisation of the differential operator - A +  V ( x )  in L2(R3),  
i.e. 

HU = -Au + V ( X ) U  D ( H )  = H2(R3) (2.3) 

where D(H) means the domain of H and H2(R3) is the Sobolev space of the second 
order. Notice that the non-negativeness of the potential V ( x )  would exclude the 
existence of the eigenvalues of H which were discussed by Newton (1985). 

Let s(7)  be a real-valued C2 function on R such that 

SuPP(s)= [ a ,  bl (2.4) 

U o ( t ,  X )  = uo(t,  X ,  e) = S ( X .  e - t )  

with - c o < a < b < o o .  Let 8 E S 2  and set 

(2.5) 
where x *  8 denotes the inner product in R3. Then uo(x, t )  satisfies the (free) wave 
equation (1.3). Since we have 

with 

to  = - b  - Ro and t ,=-a+Ro  
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the positive constant Ro being given in assumption 2.1. Thus uo(t ,  x, e)  satisfies the 
plasma wave equation (1.1) for t s to and t 3 t ,  . Let u ( t ,  x, e )  be the solution of the 
plasma wave equation (1.1) with the initial condition 

U ( t 0 ,  x, e) = uo(t0, x, e) a,u( to ,  x, e)  =d,Uo(ro, x, 6). (2.8) 

Let us define the scattered wave uSC(r ,  x, 6)  by 

U S C ( t ,  X, e)  = u ( t ,  X ,  e) - uo( t ,  X, e).  
Then us'( t ,  x, e)  satisfies the equation 

[ A - a S -  V ( x ) ] u " =  V ( x ) u O ( t , x ,  e)  
with 

(2.9) 

(2.10) 

us'( t ,  X ,  e) = a$'( r, X, e )  = 0 t s 10 ,  x E R3. (2.11) 

In order to study the asymptotic behaviour of us'( t, x, e)  as t + CO we need some 
preparations. Let H be the Schrodinger operator defined as above. The scattering 
amplitude F(k, w, U ' )  is defined by 

1 F(k, w,  U ' )  = -- q ( y ,  - k w )  V ( y )  eiky'w' dy 
47T 5,; (2.12) 

where k > 0, w, W'E S2 ,  and q ( x ,  O ( x ,  6 E R3) is a (unique) solution of the Lippmann- 
Schwinger equation 

(2.13) 

(see, e.g., Ikebe (1960), Amrein er a1 (1977)). Let us now introduce the far-field space 
solution 

u Z ( r , x ) = u Z ( r , x ,  e , s ) = I ~ I - ' K ( l x J - t , ~ , ,  e , ~ )  (2.14) 

with w, = x / j x l  and 
. r =  

where ŝ  is the one-dimensional Fourier transform of s ( T ) ,  i.e. 

and for p < 0 F ( p ,  w,  0 )  is defined by 

F ( ~ ,  w,  e)  = F ( - ~ ,  - w ,  -e). 

(2.15) 

(2.16) 

(2.17) 

Theorem 2.2. Assume assumption 2.1. Let us'( t ,  x, 8, s )  and ug(t ,  x, 8, s )  be as above. 
Then we have 

u y t ,  X, e, S )  = e ( t ,  X, e, S )  

1 i m I/ u "( t ,  * , e, s ) - u Z( t ,  - , e, s ) /I L', R 3  = 0 

as t + CO in the sense that 

1-x 

where 1 1  / / L z , R 3 )  denotes the norm of L2(R3) .  

(2.18) 

(2.19) 
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The proof of theorem 2.2 will be given in 5 3. Wilcox (1975) gave a similar formula 
for the wave equation (1 .3)  in an exterior domain. In Wilcox (1983) he treated the 
case of the acoustic wave equation 

e:u - c(x)’p(x)V (p(x)-’vu) = 0 (2.20) 

with positive functions c(x) and p ( x )  which have compact support. 

3. Proof of theorem 2.2 

Let us start with the inhomogeneous wave equation (2.10) for the scattered wave 
us‘( t ,  x, e) with the initial condition (2.1 l ) ,  i.e. 

efusc+ HU” = - v ( x ) ~ , (  t, X, e)  = Q( t ,  X, e)  
us‘( t ,  x) = d,usc( r, x)  = 0 rs to; X E R ~  

(3 .1)  

where H is the Schrodinger operator given by (2.3). Let us note that the operators 
Hl/2 and H-1/2 are well defined because H 2 0 by assumption 2.1 and that 

because of (2.6). Then by the Duhamel integral we have for t >  t l  

us‘( t ,  x, e) = Re ( iH-’/’ ~ , ~ e x p [ - i ( f - r ) H ” ’ ] Q ( ~ , * ,  0,s)dT 

= Re[exp(-itH”’)h] (3.3) 

with 

(cf Wilcox 1975). 

operators. Let us denote by Ho the self-adjoint realisation of -A,  i.e. 
We need some results from the time-dependent scattering theory for the Schrodinger 

Ho = -Au D(Ho)  = H2(R3). (3 .5)  

W ,  = s-lim exp(itH) exp(-itHo) (3.6) 

where s-lim means the strong limit in L2(W3), and that the operators W ,  are complete 
(e.g., Ikebe 1960, Amrein et a f  1977). Further, it follows from the invariance principle 
(e.g., Kat0 1976, ch 10) that we have 

Then it is well known that there exist the wave operators W ,  given by 

f’fX 

W ,  = s-lim f ’ * X  exp(irH”*) exp(-itHi’2). (3 .7)  

Therefore the adjoint operators U ,  = WT of W ,  are given by 

U ,  =s-lim I - fX exp(irHA’2) exp(-irH’/*). (3.8) 
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Let us introduce the complex-valued scattered wave os‘ by 

us‘ = us‘( t ,  x, 8, s) = exp( -i tH  h (3 .9)  
with h given by (3 .4) .  Then, noting that 

U’‘ = exp( -itH;”) exp(itH;”) exp( -irH”2)h (3.10) 

we see that 

v s c ( e ,  t, e,s)=exp(-itH;’2)U+h(., 6 ,s )  (3.11) 

as t -* 00 in the sense that 

lim I Ivsc(t ,  x, e, s ) - e x p ( - i t ~ ~ ” ) ~ + g ( . ,  e, S ) I I ~ ~ ( ~ ~ ) = O .  (3.12) 
1-OC 

Let g E  L2(R3) and set 

w = exp( -itH;”)g. (3.13) 

As is shown by Wilcox ( 1 9 7 9 ,  w satisfies the following asymptotic formula: 

w ( x ,  t )  = IXI-’Go(lxl- 4 U,, g )  t - *co (3.14) 

where w, = x/lxl, 

and ( sag)( 6 )  is the usual Fourier transform of g, i.e. 

(3.15) 

(3.16) 

in L2(R:) with p > O  and W E  S 2 .  Setting g =  U+h in (3.14),  we get 

exp(-itH;”)U+h = I ~ l - ~ G ~ ( l x l -  t, w,, U+h) (3.17) 

as t -* co. Let us define G (  v, w,  8, s) by 

G(v,w,8,S)=Go(v,w, U+h(*,  0 , s ) )  (3.18) 
and set 

u Z ( t ,  X, e, S )  = I x I - ’ G ( ~ x ~  - t, U,, e, s).  (3.19) 

Then it follows from (3.11),  (3 .17)-(3.19)  that the asymptotic formula 

us‘( t ,  X, e, S )  = U:( t, X, e, S )  (3.20) 

as t -* co, i.e. 

lim jl us‘( t, . , e, s )  - u:( t, a ,  e, S )  11 L 2 ( R 3 )  = 0. (3.21) 

Let us study the asymptotic wavefunction G( v, w,  8, s) for the complex-valued 

(3.22) 
where 9% is the adjoint of the Foueier transform 9o and 9+ is the generalised Fourier 
transform associated with the Schrodinger operator H = - A +  V(x) given by 

1-x 

scattered wave us‘( t, x, 8, s) .  It follows from the stationary scattering theory that 

U+h = WTh = 9 , * 9 + h  

(3.23) 
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in L2(Ri). The operator 9+ is known to be a unitary operator from L i ( R 3 )  = L2(R3, dx) 
onto L:(R3)  = L2(R3, d t )  such that 

(3.24) 

where S*,, the adjoint of 9+, is a unitary operator from L: (R3)  onto L:(R3), I is a 
Borel set in (0, CO), C d t )  is the characteristic function defined by 

ST C,qS+ = E (I) 

if 1{I2tz I 
otherwise 

(3.25) 

and E ( - )  is the spectral measure associated with the Schrodinger operator H. It is 
also well known that assumption 2.1 is strong enough to guarantee the asymptotic 
completeness, i.e. the range of E ( ( 0 ,  CO)) is equal to both of the incoming and outgoing 
spaces. Since H L 0 in our case, the generalised Fourier transform 9+ gives the spectral 
representation of H. It also follows the absolute continuity of H (see, e.g., Ikebe 1960, 
Simon 1971, Amrein et a1 1977). From (3.15) and (3.22) we obtain 

(3.26) ~ ( v ,  e, S)  = ~ , ( v ,  9 , * g + h )  =- e i " ' ( ~ + ~ ) ( t ) l ~ = , w ( - i ~ )  dp 

where we should notice the relation %$So = identity. Further, recalling the definition 
of h ( x ,  8, s) and S+ ((3.3) and (3.23)) and using the well known relation 

9 + @ ( H )  = @(1tI2)9+ (3.27) 

1 "  
(2.rr)'/2 I, 

with a Borel measurable function @( k) defined on (0, CO), we obtain 

(S+h)( t )  = 9+( iH-l/2 IP, exp(iTH'/Z)Q(-, e, s) dT 

X 

= iltl-' exp(i7It1)9+Q(., 4 s) d7 

r 

(3.28) 

with the one-dimensional Fourier transform s*( 161) defined by (2.16). Thus, setting 
5 = pw in (3.28), we arrive at 

= ( ~ ) " 2 ~ o x e i u p i ( p ) F ( p , w ,  8 ) d p  (3.29) 

with the scattering amplitude F ( p ,  w, e )  given by (2.12). 
Since we have found the asymptotic wavefunction G( v, U ,  8, s)  for the complex- 

valued scattered wave us'( ?, x, 8, s), it is now easy to find the asymptotic wavefunction 
K (  Y, U ,  8, s) for the real-valued scattered wave us'( f, x, 0, s). Obviously K( v, w, 0, s) 
should be defined as 

K ( v , w ,  e ,s )=Re(G(v ,w,  6,s)) .  (3.30) 
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Thus it follows from (3.29) that 
K ( v , w ,  O , s ) = f ( G ( v , w ,  8 , s ) + G ( v , w ,  8,s) )  

(e’””s^(p)F(p, U, 8)+e-iYPS*(-p)F(p, -U,  -8) dp 

e”’”s^(p)F(p, w,  8) dp  (3.31) 

where we have used the well known relation 

H P ,  w, 0) = F(p,  -w ,  -6) (3.32) 
and we define F(p, w,  8) for p < O  as in (2.17), i.e. 

F(p, w , e )  = F(-p, -U, -6) ~ < o ; o J , ~ E s ~ .  (3.33) 
Thus we obtain (2.18) in theorem 2.2, which completes the proof. 

Let us finish this section with a remark on the complex-valued scattered wave U’‘. 
In the proof of theorem 2.2 the complex-valued scattering wave us‘ was used only to 
introduce the real-valued scattering wave U”. However, it might be possible to use 
U’‘ for quantum mechanical problems where it is necessary for the probability ampli- 
tudes to be complex functions. 

4. Inverse scattering problem 

We have seen that, by launching the incident pulses uo(t, x, 8, s )  and evaluating the 
scattered wave us‘( t, x, 8, s), the asymptotic wavefunction K (v, w, 8, s) can be 
recovered. Through the asymptotic wavefunction K ( v ,  w, 8, s) we shall be able to 
recover the scattering amplitude F(p, w,  8) associated with the Schrodinger operator 
H = - A +  V ( x ) .  Wilcox (1983) used the Born approximation and the Radon transform 
to recover the coefficients of the acoustic wave equation. However, since we are now 
dealing with the Schrodinger operator, we have some other ways to recover the potential 
V ( x ) .  One is Newton’s method (Newton 1980) which approaches the problem by 
giving an integral equation to be solved. Another way is to use the high-energy method 
of Saitb (1982a, b). Let 

We regard 4 k . x  as a function defined on S 2  with parameters k > 0 and x E R3. Set 
4 k , x ( w )  = exp( -ikx. w )  w E s2. (4.1) 

c c  

(4.2) 

where F ( k ,  w, w ’ )  is the scattering amplitude as above. Then the following theorem 
is the main result of Saitb (1982a, b). 

Theorem 4.1. Let v ( x )  satisfy assumption 2.1, let 4 k , x  and g ( x ,  k )  be as above. Then 
the limit 

exists for all x E R3. The potential V ( x )  is recovered by 

(4.3) 

the formula 

(4.4) 
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Theorem 4.1 is true even for a general short-range potential V(x) satisfying 

I V ( X ) J  s C( 1 + X E R '  (4.5) 

with positive constants C and E (Saitb 1982a, b). In Saitii (1984), theorem 4.1 is also 
extended to the potential defined on R", n a 2 .  Set 

(4.6) 
1 

47r V(X, k )  = --mkI%g(* ,  k))(x).  

Then we have the following approximation formula (Saitb 1986). 

Theorem 4.2. Let us assume that V(x) d C( 1 + I x / ) - ~  with C > 0 and 7 > 7/4, and let 
us also assume that V(x) is a C2 function satisfying 

lDaV(x)lS C'( l+lxJ)-p x E R3; la1 = 1,2 (4.7) 

with constants C ' >  0 and p > 3, where a = (a1, a 2 ,  a3)  is a multi-index, la\ = 
a, + a,+ a3 and 

D" = D~ID;zD,"~  Dj = a/axj; j = 1,2,3. (4.8) 

where the constant C ,  depend on C', p and maxlV(x)l, but does not depend on k. 

Among other works on the inverse scattering for the plasma wave equations, DeFacio 
and Rose (1985) and Rose er al (1985) should be mentioned as a hybrid method of 
the above works. Thus we have shown that the results of the inverse scattering for the 
reduced wave equations can be used to solve the inverse scattering problem for the 
wave equations in the case of the plasma wave equation. 
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